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Preface
This book is written for the new Mathematics Extension 2 course, which is being introduced into the
NSW syllabus in 2020.

This book has been written with two main objectives: it can be used as a textbook for classroom use,
as well as a step-by-step resource to be used independently by students for their own self-study
purposes. This book provides sufficiently clear explanations about each topic in the syllabus, with
worked out examples and alternative methods, where applicable. Questions are categorised by topic
and graded from easy to hard, to help guide students in their learning. Each chapter also contains a set
of review exercises and challenge problems, as well as fully worked solutions for each question. The
review exercises will help consolidate students’ skills and knowledge, while improving their
competence and confidence. The book also features challenge problems. While they may extend
beyond the syllabus, they are designed to provide extra stimulus for highly motivated students and
increase confidence for the harder questions in the Higher School Certificate examination.

While this book is written specifically for the new Mathematics Extension 2 course, it also covers
various topics in the Advanced Mathematics and Mathematics Extension 1 courses, including
Mathematical Induction, Vectors, Integration and Elementary Dynamics. This book provides clear
explanations of the basic concepts underpinning these topics to help provide students with a strong
foundation upon which they can develop a more thorough understanding of the complex and
challenging concepts in Mathematics Extension 2.

This book also features colour-coding throughout to highlight various theorems and study tips – this
makes the book a study reference and more enjoyable to read. Students are advised to complete as
many questions in this book as possible to master the course.

This book builds upon what the Terry Lee series has been famous for: it includes many fully explained
tips and tricks to help students understand and solve problems efficiently, while ultimately developing
a greater enjoyment of the course. The joy in being able to complete Mathematics Extension 2
questions, including harder questions, in half the time is immeasurably worthwhile.

Terry Lee



The nature
of proof

HSC Outcomes

A student

understands and uses different representations of numbers and functions to model, prove results and find solutions to
problems in a variety of contexts

chooses appropriate strategies to construct arguments and proofs in both practical and abstract settings

applies various mathematical techniques and concepts to model and solve structured, unstructured and multi-step
problems

communicates and justifies abstract ideas and relationships using appropriate language, notation and logical argument

In this chapter,
1.1 The nature of proof .......................................... 6
1.2 Induction proofs............................................. 10
1.3 Inequality proofs............................................ 16
1.4 Review Exercise 1 ......................................... 19
Solutions .............................................................. 22
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1.1 The nature of proof
Mathematicians accept the truth of nothing without proof. A mathematical statement is either true or
false, but not both. To prove the truth of a statement is to provide a logical reason or a finite sequence
of logical reasons to support its truth. There are several ways to do so. But before we look at methods
of proof, let’s learn about the language of proof.

1.1.1 The language of proof

A good proof must not only use logical reasons correctly, but also the language correctly.

(a) It uses conventions, e.g. given two points A and B, AB is the vector from A to B (not the other way
around), ABm is the gradient of the line AB1, but AB could be the line AB or the interval AB or the

distance AB. To tell the difference of these usages, one must consider the context of the sentence
being used. For example, if you are asked to (1) prove that AB CD , you must understand that AB
and CD are two lines, and the intervals AB and CD may not intersect and (2) find the ratio of
AC:AB if C is a point that divides AB in the ratio 1:2 internally then both AC and AB are distances.

(b) It uses symbols. The following symbols are commonly used.
(i) In set theory, (belong to), (union), (intersection), (subset) . Also, N = the set of

natural numbers2, J or Z = the set of integers3, Q = the set of rational numbers, R = the set of real
numbers and C = the set of complex numbers.
(ii) In writing, (implies), (equivalent to), (congruent), ||| (similar), (therefore),

: (so that), (since) , iff (if and only if), (for all) and (there exists).

For example, “ 22 , 5,n n n n Z ” means 22 for all values of 5, wheren n n n is an integer;

“ 2: 2nn N n ” means there exists a positive integer n such that 22n n .

(c) It uses words that may not have the same meaning as in our commonly used language. For
example, you may have asked ‘what is the combination of this safe?’, when you wanted to refer to
the permutation of the safe. Can you answer this question? When a die is tossed, what is the
probability that the upward face shows numbers ‘1’ and ‘2’? The answer is 0, as it cannot show
both numbers. If the above question changes ‘and’ to ‘or’, then the answer would be one third.

(d) The converse of a statement is not always true. The converse of ‘if A then B’ is ‘if B then A’, where
A and B are statements. For example, ‘if it rained last night then the grass is wet today’ does not
imply that ‘if the grass is wet today then it rained last night’.

1 Why is m the symbol for gradient? No one knows, although in CRC Concise Encyclopedia of Mathematics,
Eric Weisstein claimed that it was first used in 1844 by British mathematician Matthew O’Brien. Some of you
may like this explanation of the historian Howard Eves: ‘because the word slope starts with the letter m’
(Mathematical circles revisited, 1971, page 142).
2 Is 0 a natural number? Natural numbers are counting numbers, they are 1, 2, 3, …, and whole numbers are 0, 1,
2, 3, …. Thus, 0 is a whole number, not a natural number.

Is 0 odd or even? Encyclopedia Britannica argues that as 0 is a number without remainder, it classifies as an
integer. Therefore, as 2k is even and 2k + 1 is odd, where k Z , 0 is even.

Can odd or even numbers be negative? Yes, the definition that ‘2k is even and 2k + 1 is odd’ applies for k Z .

3 Why is Z used for integers? Z stands for the German word zahlen, which means integers. Apparently, as I is not
a good choice for integers (in English, I is a pronoun), Z and the next letter J are chosen.
Z was first used in Grundlagen der Analysis, 1930, by Edmund Landau. We did not know when J was first used,
but J was mentioned in Survey of Modern Algebra, 1953, by Garrett Birkhoff and Saunders MacLane.

Correctly, these set symbols should be written in double-struck style as , , , and , but they are kept in

simple italic style in this book.
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There are different ways to prove a statement.

1.1.2 Direct proof

Example 1.1

If n is an odd integer, prove that 2n is also an odd integer.

Let 2 1, wheren k k Z .
2 2 2(2 1) 4 4 1.n k k k

2 2 2As 4 and 4 are both even, 4 4 1 is an odd integer, is odd.k k k k n 4

1.1.3 Proof by contradiction.

Example 1.2

Prove that 2 is an irrational number.

Assume that 2 is rational. Let 2
p

q
, where p and q are positive integers and have no common

factor.
2

2

2 2

2

2 2

2 2

2

2 , on squaring both sides.

2 . (1)

is even, is even.

Let 2 , where is an integer.

Substituting to (1), 4 2 .

2 .

is even, is even.

p

q

p q

p p

p k k

k q

q k

q q

But p and q assumingly do not have any common factors, they cannot both be even. The

assumption that 2 is rational is incorrect. 2 is irrational.

1.1.4 Proof by contrapositive

A statement and its contrapositive are equivalent.

The contrapositive of ‘if A then B’ is ‘if not B then not A’, where A and B are statements.
For example, ‘if there is a blackout then the light must be off’ is the same as ‘if the light is on then
there is no blackout’. Note: It does not necessarily mean that if there is no blackout then the light is on.

Use this method if a direct proof is not easy.

Example 1.3

If 2n is an even integer prove that n is even.

Assume n is not an even integer, i.e. an odd integer, then since the product of 2 odd numbers is an odd

number, 2n is odd, i.e. 2n is not even.

Therefore, by contrapositive, if 2n is even then n is even.

4 Some authors prefer to write QED to indicate that the proof is complete. QED is short for Latin ‘Quod erat
demonstrandum’, which is a translation of ‘that which was to be demonstrated’. This book chooses not to use it.
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1.1.5 Proof by counter-examples

Example 1.4

Prove that the statement “ 2 1, for 2,n n n Z , is a prime number” is not true.

Since the statement refers to all values of n such that 2,n n Z , we only need to find just one

counter-example to declare that the statement is not true.

By trial and error, let 1111, 2 1 2047 23 89n .

Therefore, 2 1, for 2,n n n Z , is not a prime number.

Induction proofs and inequality proofs will be considered in the next two sections.

Exercise 1.1
1 Fill in the blanks with the most correct symbols, using these symbols , , and . Briefly

explain your choice.
(a) He scored 3 out of 10 he failed the test. (b) even numbers are divisible by 4.

(c) 2 2 3 0x x x R . (d) xy e logex y .

2 True or false? Justify your answers.

(a) 1sin siny x x y . (b) sin cos 1,x x x R . (c) 2 2A B A B .

(d) // , 3 3AB CD AB CD . (e) 2 2:x R x y x y . (f) A B C A B C .

(g) Lines and , , , , 0, are iff 0 and // iff .Ax By C Dx Ey F A B D E AD BE AE BD

3 Directly prove the following.
(a) Prove that the angle bisectors of the base angles in an isosceles triangle are equal.
(b) Prove that the square of any integer either is divisible by 3 or gives a remainder of 1 when it is
divided by 3. Hint: Any integer is either divisible by 3 or not.

(c) If ,x y R , prove that x y x y algebraically and interpret it geometrically. Consider 4

cases (i) 0, 0x y , (ii) x < 0, y < 0, (iii) x > 0, y < 0 and 0x y (iv) x > 0, y < 0 and 0x y

(d) 2 2, prove that sec cosec 4R . (e) Prove that
1

2 1 3, 2,
n

n n N
n

.

Hint for part (e): Use
2 3( 1) ( 1)( 2)

1 1 ...
2! 3!

n nn n x n n n x
x nx x .

4 Prove by contradiction.

(a) Prove that 3 is irrational. (b) Prove that 6 is irrational.

(c) Prove that 2log 5 is irrational. (d) Prove that 3log 5 is irrational.

(e) If A B A B , where A and B are two non-empty sets, prove that A = B.
(f) In question 3, part (a), we have asked you to directly prove that the angle bisectors of the base
angles in an isosceles triangle are equal. But it is not so easy to prove the converse. Prove by
contradiction that if two angle bisectors of a triangle are equal, prove that the triangle is isosceles.

5 Prove by contrapositive.

(a) Suppose 3, ifx Z x is even, prove that x is even.

(b) Suppose ,x y Z , if xy and x y are even, prove that x and y are both even.

(c) Suppose , , if 3( )x y R x y is even, prove that x and y have the same parity.
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(d) Suppose 2, if 3 1x Z x x is even, prove that x is odd.

(e) Suppose , if 2 1nn N is a prime number then n is a prime number.

6 Prove that the following statements are not true by counter-examples.

(a) 3, 3nn N n . (b) 2 2, 0,a b a b a b .

(c) A quadrilateral is formed by joining any 4 points in a plane.
(d) The point of inflexion of a curve ( )y f x corresponds to the point where ( ) 0f x .

7 Find the mistakes in the following ‘proofs’.
(a) Question: Prove that 1 = 2.

Let ,

2 , on adding to each side

2 2 2 , on subtracting 2 to each side

2( )

1 2, on dividing by

x y

x y y y

x y x y x x

y x y x

y x

(b) Question: Prove that 2 = 3.

2 2

2 2 2

4 10 9 15

25 25 25
4 10 9 15 , on adding to each side

4 4 4

5 5
2 3 , using 2 ( )

2 2

5 5
2 3 , on taking square roots

2 2

2 3

a ab b a b

(c) Question: Prove that 1 = 2 = 3 = 4 = …
2 2

2 2

2 2

2

2 2

2

2 2

2

2

2

2 1 ( 1) .

1 1 1 1
2 1 2( 1) ( 1) 2( 1) .

2 2 2 2

1
LHS 2 1 2 3 1

2

1
2

2

1 1
2

2 2

1
.

2

1
RHS ( 1)

2

x x x

x x x x x x x x x

x x x x x

x x x x

x x x x

x x

x x
2

.

1 1
LHS RHS, ( 1) .

2 2

1.

Thus, when 1 we have 1 2, when 2 we have 2 3, and so on, 1 2 3 4 ...

x x x x

x x

x x
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1.2 Induction proofs
The term “Induction” simply means the formation of a suitable formula suggested from a number of
observations. For example, after many unfortunate incidents had occurred on Friday 13th, people came
to the conclusion that Friday 13th brings bad luck.

In mathematics, despite the meaning of the term “Induction”, the method is really a deduction method.
Each Mathematical Induction proof generally must have three steps:

Assume we want to prove the truth of a statement S(n) for all n 1, where n N .

Step 1: Prove that S(1) holds true, i.e. prove that S(n) holds true when n 1.

Step 2: Assume S(n) holds true for some value of n then prove that S(n 1) must hold true. 5

Step 3: Knowing that S(1) holds true, using step 2 we deduce that S(2) holds true; But since S(2) holds
true, S(3) must hold true using step 2 again, and so on. Therefore, we can conclude that S(n) holds true
for all n 1, by the principle of Mathematical Induction.

1.2.1 The Series type

Example 1.5

Prove by Induction that 2 2 2 2 2

1

1
1 2 3 ... ( 1)(2 1)

6

n

k

k n n n n for all integers n 1.

Let n 1, LHS 21 1, RHS
1

1 2 3 1
6

It’s true for n = 1.6

Assume that 2 2 2 2 2

1

1
1 2 3 ... ( 1)(2 1)

6

n

k

k n n n n for some integer n7.

Required to prove that
1

2 2 2 2 2 2

1

1
1 2 3 ... ( 1) ( 1)( 2)(2 3)

6

n

k

k n n n n n .

2

2

1
LHS ( 1)(2 1) ( 1) , from the assumption,

6

1
( 1) (2 1) 6( 1)

6

1
( 1) 2 7 6

6

1
( 1)( 2)(2 3), by factorising,

6

RHS.

n n n n

n n n n

n n n

n n n

The statement holds true for n + 1 if it holds true for some integer n.

By the principle of Mathematical Induction, it’s true for all integers n 1.

5 Logically equivalent, assume S(k) holds true then prove that S(k 1) must hold true. The reason is that n or k is
some integer. In this step, we only assume that the statement is true for some integer, n or k or any letter.
6 Do not ignore the importance of this step. It is advisable that you clearly show why LHS = RHS.

7 Using symbols, write ‘Assume 2

1

1
: ( 1)(2 1)

6

n

k

n N k n n n ’, i.e. assume there exists an integer n such

that the statement holds true.
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1.2.2 The Product type

Example 1.6

Prove by Mathematical Induction that
2 2

2

1 1 1 1 1
1 1 1 1 , 2,

4 9 2

n

k

n
n n Z

k n n
.

Let n 2, LHS
1 3

1
4 4

. RHS
2 1 3

2 2 4
. It’s true for n = 2.

Assume that
2 2

2

1 1 1 1 1
1 1 1 1

4 9 2

n

k

n

k n n
for some integer n.

Required to prove that
1

2 2 2
2

1 1 1 1 1 2
1 1 1 1 1

4 9 ( 1) 2( 1)

n

k

n

k n n n
.

2

2

2

2

2

2

1 1
LHS 1 , from the assumption,

2 ( 1)

1 ( 1) 1

2 ( 1)

1 2

2 ( 1)

1 ( 2)

2 ( 1)

n

n n

n n

n n

n n n

n n

n n n

n n

2
RHS.

2( 1)

n

n

The statement holds true for n + 1 if it holds true for some integer n.

By the principle of Mathematical Induction, it’s true for all integers n 2.

1.2.3 The Divisibility type

Example 1.7

Prove that 5n – 1 is divisible by 4, for all integers n 1

Let n 1, 5 – 1 4, which is obviously divisible by 4. It is true for n = 1.

Assume 5n – 1 is divisible by 4 for some integer n, 5n – 1 4M, where M is a positive integer,

5 4 1n M .

Required to prove that 15n – 1 is divisible by 4.

Now 15n – 1 5n 5 – 1

(4M 1) 5 – 1

20M 5 – 1
20M 4
4(5M 1) which is a multiple of 4.

The statement holds true for n + 1 if it holds true for some integer n.

By the principle of Mathematical Induction, it’s true for all integers n 1.
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1.2.4 The Inequality type

Example 1.8

Prove that 22 for all integers 5n n n .

Let n 5, LHS 5 22 32, RHS 5 25, LHS RHS , It is true for n = 5.

Assume that 22n n for some value of n.

Required to prove that 1 22 ( 1)n n .

LHS 12 2 2n n

2

2 2 2 2

2

2 , by assumption.

We now need to prove that 2 ( 1) 2 1, which is equivalent to 2 1, for 5.

By Calculus, let ( ) 2 1 for 5, .

( ) 2 2 8 0 for 5,

Method 1:

( ) is increasing

n

n n n n n n n

f x x x x x R

f x x x f x
2 2

2

.

But (5) 25 11 14, ( ) 14 0, i.e. 2 1 0 or 2 1 for 5.

By graphs, the 2 curves and 2 1 meet at 1 2.

The points of intersection approximate ( 0.4,0.17) and (2.4,5.8).

Sinc

Method 2:

f f x x x x x x

y x y x x

2 2e 2 1 for 2.4, 2 1 for 5.x x x x x x

fig. 1.1
2 22 ( 1) .n n

The statement holds true for n + 1 if it holds true for some integer n.

By the principle of Mathematical Induction, it’s true for all integers n 5.

1.2.5 The Double Induction type

Example 1.9

Consider the Fibonacci sequence: 1, 1, 2, 3, 5, 8, … which is defined as 1 2 2 11 and n n nT T T T T .

Prove by Mathematical Induction that
7

4

n

nT for all integers n 1.

Let n 1, 1

7
1

4
T ; and let

2

2 2

7 49
2, 1

4 16
n T . It is true for both n = 1 and 2.

Assume that
1

1

7 7
and

4 4

n n

n nT T for some integer n.

Required to prove that
2

2

7

4

n

nT .

(2.4,5.8)
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2 1LHS , by definition of the sequence,n n nT T T

1

2

7 7
, by assumptions,

4 4

7 7
1

4 4

7 11

4 4

7 44

4 16

7 49

4 16

7
.

4

n n

n

n

n

n

n

The statement holds true for n + 2 if it holds true for some integers n and n + 1.

By the principle of Mathematical Induction, it’s true for all integers n 1.

1.2.6 Miscellaneous types

Example 1.10

In a room of n people, if everyone has to shake hands with each other once, prove by Mathematical

Induction that the number of hand-shakes is
( 1)

2

n n
.

If there are two people, obviously there is only one hand-shake.

Substituting n 2 into the formula gives
2(2 1)

1
2

. Therefore, the formula holds true for n = 2.

Assume that there are
( 1)

2

n n
handshakes amongst n people.

Required to prove there are
( 1)( )

2

n n
handshakes if there are n 1 people.

Now, suppose a new guest arrives, he (she) must shake hands with everyone already in the room, thus,
he (she) must shake n hands.

The total number of hand-shakes
( 1)

2

n n
n

2

2

2

2

2

( 1)( )
, as required.

2

n n n

n n

n n

By the principle of Mathematical Induction, it’s true for all integers n 2.
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Exercise 1.2
1 Prove by Mathematical Induction for all integers n 1.

(a) 1 2 3 . . . n
( 1)

2

n n
. (b)

2 2
3 3 3 3 ( 1)

1 2 3 ...
4

n n
n .

(c) 21 3 5 ... (2 1)n n . (d) 2 4 6 . . . 2n n(n 1).

(e) 1

1

2 2 1
n

k n

k

. (f)
2

2

1

(4 1)
(2 1)

3

n

k

n n
k .

(g)
1

1

( 1) 1

n

k

n

k k n
. (h) 2

1

( 1)( 2)(3 5)
( 1)

12

n

k

n n n n
k k .

(i)
1

( 1)( 2)( 3)
( 1)( 2)

4

n

k

n n n n
k k k . (j)

2

1

1 2 3 ... (2 ) (2 1)
n

k

k n n n . 8

(k)
2 3 ( 1)

2

n

k n

n n
k . (l)

2 ( 1)(7 5)
( 1)

3

n

k n

n n n
k k .

(m)

2 3
2 ( 1)

( 1) ( 2) ...
2

n

k n

n n
k n n n n . Hint: The term precedes 2 2is 1n n .

2 Prove by Mathematical Induction for all integers n 1, unless stated otherwise.

(a)
3

2 2 2 2 2 2
1 1 1 1 ... 1

3 4 5 ( 1)

n

k k n n n
for all integers n 3.

(b)
2

1

(2 1)(2 3) 2 3

(2 1) 3(2 1)

n

k

k k n

k n
. (c)

1

2 ( 1)( 2)
1

2

n

k

n n

k
.

(d)
2

2 2
1

( 1) 3

n

k

n

k k n
. (e)

2

3

2 1
1

(2 1)

n

k k n n
.

(f) ( 1)( 2)...(2 ) 2 1 3 5 ...(2 1) for all integers 2nn n n n n .

3 Prove by Mathematical Induction for all integers n 1, unless stated otherwise.

(a) 6 4n is divisible by 10. (b) 23 n is a multiple of 9.

(c) 3 2n n is divisible by 3. (d) 5 2 11n n is a multiple of 3.

(e) 13 6 2n is divisible by 10. (f) ( 1)( 2)n n n is a multiple of 6.

(g) 7 6n n is divisible by 13 for all odd integers n 1.

(h) 3 7n n is a multiple of 10 for all odd integers n 1.

(i) 2 2n n is divisible by 8 for all even integers n 2.

(j) 3 2n n is a multiple of 12 for all even integers n 2.

4 Prove by Mathematical Induction for all integers n 1, unless stated otherwise.

(a) 3 2 1n n . (b) 1! 2nn . (Note: ! 1 2 3 ...n n )

(c) 2 ( 1)n n n for n 5. (d) 3 ( 1)( 2)n n n n for n 5.

(e) 33n n for n 4. (f) 23 2n n for n 2.

8 In this series, the first term is 1, each successive term is formed by adding 1 to the previous term and the last
term is 2n. Therefore, when n = 1, the series produces 1 + 2; when n = 2, the series produces 1 + 2 + 3 + 4.
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(g) 3 22 3
n n for n 2. (h) 22 53

n n for n 4.

5 Prove by Mathematical Induction that is divisible byn nx y x y for all integers n 2.

6 (a) Prove by Mathematical Induction that (1 ) 1nx is divisible by x for all integers n 1.

(b) Factorise 12 4 3 1n n n . By using the result of part (a), deduce that 12 4 3 1n n n is

divisible by 6 for all integers n 1.

7 (a) Prove by Mathematical Induction that 1 2 1 1 2 2sin( ) sin sin sinn n nx x x a x a x a x ,

where 1 2, , , na a a are real numbers such that 1ia for 1, 2, ,i n .

(b) Hence, deduce that sin sin for 0nx n x x .

8 (a) Prove that
4 3

1 2 3 , for 1
6

n
n n n , by Mathematical Induction.

(b) Prove that
2

1 2 3
3

n
n n by using a graphical means.

(c) Hence, estimate 1 2 3 100 to the nearest hundred.

9 (a) Prove by Mathematical Induction that
2 2 2

1 1 1 1
1 2 , for all 1

2 3
n

n n
.

(b) Prove that
2 2 2 2

1 1 1 1 1 1 3 1
, hence, deduce that 1 , for all 1

1 2 3 2 1
n

n n n n n
.

(c) Show that
2 2 2

1 1 1
1.49 1 1.99

2 3 99
.

10 Let
1 1 1 1

... , where 1
1 2 2 1 2

nt n
n n n n

.

(a) Graphically show that
1

ln 2
2

n nt t
n

.

(b) Let
1 1 1 1 1

1 ...
2 3 4 2 1 2

ns
n n

. Prove by Mathematical Induction that n ns t .

(c) Hence, find to 3 decimal places, the value of
1 1 1 1 1

1 ...
2 3 4 9999 10 000

.

11 A sequence nT is defined by 1 2 2 15, 7 and 3 2 .n n nT T T T T

Prove by Mathematical Induction for all integers n 1 that 3 2n
nT .

12 A sequence nT is defined by 1 2 2 11 and .n n nT T T T T

(a) Prove by Mathematical Induction for all n 1 that , where and , ,
5

n n

nT are

the roots of the equation 2 1 0x x .

(b) Prove that 3nT is always even for all integers n 1.

(c) Assume the ratio 1n

n

T

T
approaches a limit as n , show that 1 1 5

2
n

n

T

T
.

13 A sequence nS is defined by 1 2 1 21, 2 and ( 1) , for 2n n nS S S S n S n .

(a) Find 3 4andS S .

(b) Prove that ( 1)x x x x .

(c) Prove by Mathematical Induction that ! for all integers 1nS n n .
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14 (a) Prove that if
2 2

( ) then ( ( ))
1 1 2

x x
f x f f x

x x
.

(b) Prove by Mathematical Induction that
2times

( (... ( )...)
1n

x
f f f x

nx
for all integers n 2.

15 (a) If a and b are two positive numbers, explain why ( )( ) 0n na b a b .

(b) Hence, prove by Mathematical Induction that
2 2

nn na b a b
for all positive integers n 1.

16 Prove by Induction that the sum of exterior angles of a n-sided convex polygon is 360 , n 3.

17 Given n points in a plane, no three points are collinear, prove by Induction that the number of lines

joining any two points is
( 1)

2

n n
for all integers n 2.

18 Prove by Mathematical Induction that the number of diagonals in a n-sided regular convex

polygon is
( 3)

2

n n
for all integers n 3.

19 Each Mathematical Induction proof involves with 3 steps. Which of the 3 steps does not hold true
in the following statements? Justify your answer.

(a) 2 3 1n n is even for all integers n 1. (b) 33n n for all integers n 1.

1.3 Inequality proofs
1.3.1 Inequality by Calculus

Example 1.11

Prove that
ln 1

. Hence, deduce that e xx
x e

x e
.

ln
Let ( )

x
f x

x
.

2 2

1
ln

1 ln
( ) .

x x
xxf x

x x

2

4 4 3

1
2 (1 ln )

2 2 ln 2ln 3
( ) .

x x x
x x x x xxf x

x x x

3

( ) 0 when ln 1, .

1 1
When , ( ) 0 : , is a maximum point.

f x x x e

x e f e e
e e

ln 1
.

ln , on multiplying by , noting 0.

.

.

x

e

e x

x

x e

x
x x x

e

x e

x e
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